Effects of a capillary transition zone on the stability of a diffusive boundary layer

نویسندگان

  • Maria T. Elenius
  • Jan M. Nordbotten
  • Henrik Kalisch
چکیده

In geological storage of carbon dioxide (CO2), the buoyant CO2 plume eventually accumulates under the caprock. Due to interfacial tension between the CO2 phase and the water phase, a capillary transition zone develops in the plume. This zone contains supercritical CO2 as well as water with dissolved CO2. Under the plume, a diffusive boundary layer forms. We study how cross-flow between the capillary transition zone and the diffusive boundary layer affects gravitational stability of the diffusive boundary layer. Linear stability analysis shows that this cross-flow has no significant effect on the selection of the critical mode. However, interaction with the capillary transition zone enhances the instability of the boundary layer, such that the onset of instabilities occurs earlier, when the diffusive boundary layer is thinner. The onset time may be reduced by a factor of five, which corresponds to the thickness of the diffusive boundary layer at onset being reduced by a factor of two. This reduced thickness of the boundary layer at onset can be interpreted in terms of a reduced portion of the critical mode that must ’fit’ inside the boundary layer when the other portion of the mode is confined within the capillary transition zone. Direct numerical simulations for the non-linear regime show that the mass transfer rate can be enhanced up to four times when the cross-flow is accounted for. This increase is related to advective inflow of CO2-saturated water across the interface. Therefore, the contribution from dissolution to the safety of geological storage of CO2 begins earlier and can be considerably larger than showed by estimates that neglect the capillary transition zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the onset of triple-diffusive convection in a layer of nanofluid

On the onset of triple-diffusive convection in a horizontal layer of nanofluid heated from below and salted from above and below is studied both analytically and numerically. The effects of thermophoresis and Brownian diffusion parameters are also introduced through Buongiorno model in the governing equations. By using linear stability analysis based on perturbation theory and applying normal m...

متن کامل

Double diffusive reaction-convection in viscous fluid layer

In the present study, the onset of double diffusive reaction-convection in a uid layer with viscous fluid, heated and salted from below subject to chemical equilibrium on the boundaries, has been investigated. Linear and nonlinear stability analysis have been performed. For linear analysis normal mode technique is used and for nonlinear analysis minimal representation of truncated Fourier serie...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Effects of Weak Layer Angle and Thickness on the Stability of Rock Slopes

This paper researches two key factors (angle and thickness) of a weak layer in relation to their influencing mechanism on slope stability. It puts forward the sliding surface angle and morphological model criteria for the control of rock slopes and realization of its failure mechanism. By comparing the Failure Modes and Safety Factors (Fs) obtained from numerical analysis, the influence pattern...

متن کامل

EFFECTS OF MAGNETIC FIELD ON THE RED CELL ON NUTRITIONAL TRANSPORT IN CAPILLARY-TISSUE EXCHANGE SYSTEM

A mathematical model for nutritional transport in capillary tissues exchange system in thepresence of magnetic field has been studied. In this case, the cell is deformed. Due to concentrationgradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Theanalytical method is based on perturbation technique while the numerical simulation is basedon finite difference scheme. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011